Encoding molecular structures as ranks of models: A new, secure way for sharing chemical data and development of ADME/T models

Igor V. Tetko

IBPC, Ukrainian Academy of Sciences, Kyiv, Ukraine and Institute for Bioinformatics, Munich, Germany

March 14th, ACS

Encoding molecular structures as SHUFFLED

 ranks of models: A new, secure way for sharing chemical data and development of ADME/T models
Igor V. Tetko

IBPC, Ukrainian Academy of Sciences, Kyiv, Ukraine and Institute for Bioinformatics, Munich, Germany

Structure-Property correlations

- Require representation (description) of the molecule in a format that can be used for machine learning methods, i.e. MLRA, neural network, PLS
- Two major systems: topological and 3D based
- Fragment-based indices
- topological indices
- E-state indices
-Quantum-chemical parameters
- VolfSurf descriptors
- Molecular shape parameters

Three scenario for structure decoding

- Can we identify the molecule provided we have it in our portfolio? -- the most difficult scenario
- Can we do the same in knowledge that the molecule can be originated from one of several chemical series?
- Can we identify the molecule provided we do not know anything about it? -- the practical scenario

Can we identify the molecule provided we have it in our portfolio? Topological indices.

- The ability to unambiguously identify a molecule is limited to information content of indices
- If the indices contain sufficient information, the identification is possible
- Information content of a molecule:
- CCCCC
-- 11111 (5 bits)
- C1CCCC1N -- 12111123 (11 bits)

$$
\begin{aligned}
& C-1 \text { bit } \\
& 1--2 \text { bits } \\
& N--3 \text { bits }
\end{aligned}
$$

Information content of molecules in set of 12908 molecules (PHYSPROP database)

Element	Frequency	Bits
C	78777	1
c	76965	2
$)$	42336	3
$($	42336	4
O	29349	5
1	23648	6
$=$	20610	7
N	16156	8
2	12658	9

not optimal -- Huffman, arithmetic coding, other algorithms: gz, zip -- 3.5 bits/atom, bzip2 -- 2.9 bits/atom

Information content of a molecule

- 30 -- 40 atoms -- 90 -- 110 bits
- 1 double value -- 32 bits, 3 -- 4 topological indices potentially contains sufficient information to unambiguously decode molecule with 40 atoms!
- In reality a larger number of indices can be required because of rounding effects, non-optimal storage of information
- Thus, the encoding of molecules using topological indices can be insecure.

When reverse engineering is impossible? A practical scenario.

- ALOGPS program:

75 indices per molecule for logP
33 indices per molecule for logS

- We use decreased resolution of data, i.e to just 3 significant digits per index (7-10 bits instead of 32 bits)
- Additional bits are coming from range ~ 11 bits per index => 10-12 indices per molecule with 40 atoms

The information encoded in the indices could be (theoretically) adequate to decode the molecules with < 50 heavy atoms.

But, this can be too pessimistic conclusion. The theoretical possibility to decode does not propose a way how this can be done!

ALOGPS 2.1

-LogP: 75 input variables corresponding to electronic and topological properties of atoms (E-state indices), 12908 molecules in the database, 64 neural networks in the ensemble. Calculated results RMSE $=0.35$, MAE $=0.26, \mathrm{n}=76$ outliers (>1.5 log units)
-LogS: 33 input E-state indices, 1291 molecules in the database, 64 neural networks in the ensemble. Calculated results RMSE=0.49, MAE=0.35, n=18 outliers (>1.5 log units)

- Tetko, Tanchuk \& Villa, JCICS, 2001, 41, 1407-1421.
- Tetko, Tanchuk, Kasheva \& Villa, JCICS, 2001, 41, 1488-1493.
- Tetko \& Tanchuk, JCICS, 2002, 42, 1136-1145.

http://www.vcclab.org

Welcome to the ALOGPS 2.1 program!

For more information click on a keyword or a calculated result or contact Igor V. Tetko. If you see null pointer exception reload this page (java bug of some browsers).

You can also download a stand-alone version of the program

Artificial Feed-Forward Back-propagation Neural Network (FBNN)

Early Stopping Over Ensemble (ESE)

ASNN: an example correction

\square net1
\square net2
\square net3
\square net4
\square net5
■net6
\square net7
\square net8
\square net9
\square net10
-- both molecules are the nearest neighbors, $\mathrm{r}^{2}=0.47$, in space of residuals!

Associative Neural Network (ASNN)

A prediction of case $i:\left[\mathbf{x}_{i}\right] \cdot[\mathbf{A N N E}]_{M}=\left[\mathbf{z}_{i}\right]=\left[\begin{array}{c}z_{1}^{i} \\ \vdots \\ z_{k}^{i} \\ \vdots \\ z_{M}^{i}\end{array}\right] \quad \bar{z}_{i}=\frac{1}{M} \sum_{k=1, M} z_{k}^{i}$
Pearson's (Spearman) correlation coefficient $r_{i j}=R\left(z_{i}, z_{j}\right)>0$ in space of residuals

$$
\bar{z}_{i}^{\prime}=\bar{z}_{i}+\frac{1}{k} \sum_{j \in N_{k}\left(\mathbf{x}_{i}\right)}\left(y_{j}-\bar{z}_{j}\right) \quad \ll=\text { ASNN bias correction }
$$

The correction of neural network ensemble value is performed using errors (biases) calculated for the neighbor cases of analyzed case $\mathbf{x}_{\boldsymbol{i}}$ detected in space of neural network models

Prediction Space of the model does not cover the "in house" compounds

Each new molecule is encoded as rank of models

Encoding of a molecule as rank of models

- Δ log $P=\log P$ exp-logPcalc
-64 values, ranks of NN

0.89	0.88	0.86	0.90	0.91	0.85	.885	0.83	0.95	0.94
5	7	8	4	3	9	6	10	1	2

0.09	0.08	0.06	0.10	0.11	0.05	.085	0.03	0.15	0.14
5	7	8	4	3	9	6	10	1	2

0.59	0.38	0.26	0.60	0.71	0.15	.485	0.03	0.95	0.84
5	7	8	4	3	9	6	10	1	2

Millions of solutions provide the same ranks of NN responses --> no way to decode -- previous name of the paper, but...

How selective is rank coding?

- $8 \times 64=512$ bits (comparable to MDL keys)
- 126 out of 121281 Asiprox (0.1\%)
- 12 out of 12908 PHYSPROP (0.1\%)

ALOGPS: Extrapolation vs Interpolation

ALOGPS logP (blind) $\quad: M A E=1.27, R M S E=1.63$ ALOGPS logP (LIBRARY): $M A E=0.49, R M S E=0.70$

Tetko, JCICS, 2002, 42, 717-742.
Tetko \& Bruneau, J. Pharm. Sci., 2004, 94, 3103-3110.

Analysis of Pfizer data

ALOGPS prediction for ElogD set of 17,861 compounds

ALOGPS "as is"
Pallas PrologD: $\quad M A E=1.06, R M S E=1.41$
ACDlogD (v. 7.19): $\quad M A E=0.97, R M S E=1.32$
ALOGPS: $\quad M A E=0.92, R M S E=1.17$
ALOGPS LIBRARY: $M A E=0.43, R M S E=0.64$
Tetko \& Poda, J. Med. Chem., 2004, 94, 5601-5604.

PHYSPROP data set

Total: 12908

Prediction performance as function of

 similarity in space of models of "star" setBlind prediction

max correlation coefficient of a test compound to training set compounds
$\underline{M A E}=0.43$

LIBRARY mode

max correlation coefficient of a test compound to LIBRARY compounds

$$
\text { MAE }=0.28(0.26)
$$

Reliability of new compound predictions
$r^{2} \quad$ error
$\left.\begin{array}{l}0-0.2 \square>0.7 \\ 0.2-0.4 \square \sim 0.6 \\ 0.4-0.6 \square \sim 0.5 \\ 0.6-0.8 \square \sim 0.4 \\ 0.8-1 \\ \hline\end{array}\right)=0.3$

NCl , 250,000
http://asinex.com 120,000
http://ambinter.com 650,000

Reliability of new compound predictions

$r^{2} \quad$ error
$0-0.2 \square>0.7$
$0.2-0.4 \square \sim 0.6$
$0.4-0.6 \square \sim 0.5$
$0.6-0.8 \square \sim 0.4$
$0.8-1 \square<0.3$

PHYSPROP

NCI , 250,000
http://asinex.com 120,000
http://ambinter.com 650,000

Is identification possible? PHYSPROP -- Asinex study

Is identification possible? PHYSPROP -- Asinex study

Is identification possible? PHYSPROP -- Asinex study

Securing the data -- shuffling ranks!

Shuffle $r^{2}=0.8$

■MAE
$\square \%$ compounds

Rank shuffling

- Shuffled rank molecule is less similar to itself than the molecules from the other series wiil be pick-upped --> secure encoding
- Different molecules will have different distribution of neighbors as function of similarity=> lower level of security (e.g. 1 in $10^{5}, 1$ in 10^{6}) can be determined individually for each single compound using an external library (e.g. complete enumeration, compilation of public libraries)
- Everything can be done in completely automatic mode

Possible approaches

Raw topological indices

- Development of new global models, after the development the data can be discarded
- There is a theoretical possibility to decode the structure, particular for smaller number of atoms in a molecule (not clear if such algorithm can be realized)
- One-to-one contract may be required...

Rank of models

- Allows to incorporate explicit structural parameters as feature elements
- No limitation on the number of indices
- The quality of local correction is comparable to retraining
- Very appealing to share on the WWW
- Security can be controlled by shuffling but will deteriorate prediction quality of model

Development of new models

- Develop new models in-house
- Provide them to be included in the set of models
- Predict new data using an ensemble of diverse models (ASNN in space of models of different companies)
- A complete set of automated tools to develop them can be provided

Acknowledgement

Part of this presentation was done thanks to Virtual Computational Chemistry Laboratory INTAS-INFO 000363 project (http://www.vcclab.org).

I thank Prof Hugo Kubinyi, Drs Pierre Bruneau and Gennadiy Poda for collaboration and Prof. Tudor Oprea for inviting me to participate in this conference.

Thank you for your attention!

